sábado, 17 de julio de 2010

COMPONENTES ELECTRONICOS

QUE ES CORRIENTE:

Es la cantidad de carga que pasa por un punto en un determinado tiempo.
su letra: (A).

VOLTAJE:

Es la fuerza electromotriz capaz de transportar una carga de un punto a otro.

su letra (V).

POTENCIA:

Es la Cantidad de energía que se consume por un determinado tiempo

su letra (W).

RESISTENCIA:

Dificultad que opone un conductor al paso de la corriente eléctrica Elemento de un circuito eléctrico que dificulta el paso de la corriente produciendo calor.
Su valor es dado en ohmios. La forma mas fácil de conectar resistencias entre si por asociaciones serie, paralela y mixta.

SIMBOLOGÍA:


OMEGA:
RESISTENCIA:



Resistencias de montaje superficial SMD (Surface Mounted Device): Identificar el valor de una resistencia SMD es más sencillo que para una resistencia convencional, ya que las bandas de colores son reemplazadas por sus equivalentes numéricos y así se imprimen en la superficie de la resistencia, la banda que indica la tolerancia desaparece y se la "reemplaza" en base al número de dígitos que se indica, es decir; un número de tres dígitos nos indica en esos tres dígitos el valor del resistencia, y la ausencia de otra indicación nos dice que se trata de una resistencia con una tolerancia del 5%. Un número de cuatro dígitos indica en los cuatro dígitos su valor y nos dice que se trata de una resistencia con una tolerancia del 1%.


Primer dígito: corresponde al primer dígito del valor
.
Segundo dígito: corresponde al segundo dígito del valor
Tercer dígito: (5%): representa al exponente, o "números de ceros" a agregar

TABLA DE RESISTENCIA DE TRES DIGITOS:
Número Exponente

0 1
1 10
2 100
3 1000
4 10000
5 100000
6 1000000
7 10000000
8 100000000
9 1000000000



FORMULA PARA UNA RESISTENCIA DE CUATRO DIGITOS:

1º dígito = 1
2º dígito = 0
3º dígito = 2
4º dígito = 3

UNA MULTIPLICACION DE LOS TRES PRIMEROS DIGITOS CON EL ULTIMO:

102 x 1000 = 102 K. ohms

Otras resistencias son:

Resistencias de hilo bobinado.- Fueron de los primeros tipos en fabricarse, y aún se utilizan cuando se requieren potencias algo elevadas de disipación. Están constituidas por un hilo conductor bobinado en forma de hélice o espiral (a modo de rosca de tornillo) sobre un sustrato cerámico.


resist. bobinada

bobinada


las aleaciones empleadas son las que se dan en la tabla, y se procura la mayor independencia posible de la temperatura, es decir, que se mantenga el valor en ohmios independientemente de la temperatura.


Resistencias de carbón prensado.- Estas fueron también de las primeras en fabricarse en los albores de la electrónica. Están constituidas en su mayor parte por grafito en polvo, el cual se prensa hasta formar un tubo como el de la figura.


resistencia carbon


R prensada


Las patas de conexión se implementaban con hilo enrollado en los extremos del tubo de grafito, y posteriormente se mejoró el sistema mediante un tubo hueco cerámico (figura inferior) en el que se prensaba el grafito en el interior y finalmente se disponian unas bornas a presión con patillas de conexión.

Las resistencias de este tipo son muy inestables con la temperatura, tienen unas tolerancias de fabricación muy elevadas, en el mejor de los casos se consigue un 10% de tolerancia, incluso su valor óhmico puede variar por el mero hecho de la soldadura, en el que se somete a elevadas temperaturas al componente. Además tienen ruido térmico también elevado, lo que las hace poco apropiadas para aplicaciones donde el ruido es un factor crítico, tales como amplificadores de micrófono, fono o donde exista mucha ganancia. Estas resistencias son también muy sensibles al paso del tiempo.


Las conexiones externas se hacen mediante crimpado de cazoletas metálicas a las que se une hilos de cobre bañados en estaño para facilitar la soldadura. Al conjunto completo se le baña de laca ignífuga y aislante o incluso vitrificada para mejorar el aislamiento eléctrico. Se consiguen así resistencias con una tolerancia del 5% o mejores, además tienen un ruido térmico inferior a las de carbón prensado, ofreciendo también mayor estabilidad térmica y temporal que éstas.


Resistencias de película de óxido metálico.- Son muy similares a las de película de carbón en cuanto a su modo de fabricación, pero son más parecidas, eléctricamente hablando a las de película metálica. Se hacen igual que las de película de carbón, pero sustituyendo el carbón por una fina capa de óxido metálico (estaño o latón). Estas resistencias son más caras que las de película metálica, y no son muy habituales. Se utilizan en aplicaciones militares (muy exigentes) o donde se requiera gran fiabilidad, porque la capa de óxido es muy resistente a daños mecánicos y a la corrosión en ambientes húmedos.

Res. MOX


Resistencias de película metálica.- Este tipo de resistencia es el que mayoritariamente se fabrica hoy día, con unas características de ruido y estabilidad mejoradas con respecto a todas las anteriores. Tienen un coeficiente de temperatura muy pequeño, del orden de 50 ppm/°C (partes por millón y grado Centígrado). También soportan mejor el paso del tiempo, permaneciendo su valor en ohmios durante un mayor período de tiempo. Se fabrican este tipo de resistencias de hasta 2 watios de potencia, y con tolerancias del 1% como tipo estándar.

Res.  película metálica


Resistencias de metal vidriado.- Son similares a las de película metálica, pero sustituyendo la película metálica por otra compuesta por vidrio con polvo metálico. Como principal característica cabe destacar su mejor comportamiento ante sobrecargas de corriente, que puede soportar mejor por su inercia térmica que le confiere el vidrio que contiene su composición. Como contrapartida, tiene un coeficiente térmico peor, del orden de 150 a 250 ppm/°C. Se dispone de potencias de hasta 3 watios.


Se dispone de estas resistencias encapsuladas en chips tipo DIL (dual in line) o SIL (single in line).



Resist.  vidriada


Resistencias dependientes de la temperatura.- Aunque todas las resistencias, en mayor o menor grado, dependen de la temperatura, existen unos dispositivos específicos que se fabrican expresamente para ello, de modo que su valor en ohmios dependa "fuertemente" de la temperatura. Se les denomina termistores y como cabía esperar, poseen unos coeficientes de temperatura muy elevados, ya sean positivos o negativos. Coeficientes negativos implican que la resistencia del elemento disminuye según sube la temperatura, y coeficientes positivos al contrario, aumentan su resistencia con el aumento de la temperatura. El silicio, un material semiconductor, posee un coeficiente de temperatura negativo. A mayor temperatura, menor resistencia. Esto ocasiona problemas, como el conocido efecto de "avalancha térmica" que sufren algunos dispositivos semiconductores cuando se eleva su temperatura lo suficiente, y que puede destruir el componente al aumentar su corriente hasta sobrepasar la corriente máxima que puede soportar.



A los dispositivos con coeficiente de temperatura negativo se les denomina NTC (negative temperature coeficiente).


A los dispositivos con coeficiente de temperatura positivo se les denomina PTC (positive temperature coefficient).


Una aplicación típica de un NTC es la protección de los filamentos de válvula, que son muy sensibles al "golpe" de encendido o turn-on. Conectando un NTC en serie protege del golpe de encendido, puesto que cuando el NTC está a temperatura ambiente (frío, mayor resistencia) limita la corriente máxima y va aumentando la misma según aumenta la temperatura del NTC, que a su vez disminuye su resistencia hasta la resistencia de régimen a la que haya sido diseñado. Hay que elegir correctamente la corriente del dispositivo y la resistencia de régimen, así como la tensión que caerá en sus bornas para que el diseño funcione correctamente.


Res. NTC

NTC

Res. PTC

PTC




LEY DE OHM:

La corriente eléctrica es directamente proporcional al voltaje e inversamente proporcional a la resistencia eléctrica

CIRCUITO EN SERIE:

Un circuito serie como aquel circuito en el que la corriente eléctrica solo tiene un solo camino para llegar al punto de partida, sin importar los elementos intermedios. En el caso concreto de solo arreglos de resistencias la corriente eléctrica es la misma en todos los puntos del circuito.











CIRCUITO EN PARALELO:
un circuito paralelo como aquel circuito en el que la corriente eléctrica se bifurca en cada nodo. Su característica mas importante es el hecho de que el potencial en cada elemento del circuito tienen la misma diferencia de potencial.


CIRCUITO MIXTO:

una combinación de elementos tanto en serie como en paralelos. Para la solución de estos problemas se trata de resolver primero todos los elementos que se encuentran en serie y en paralelo para finalmente reducir a la un circuito puro, bien sea en serie o en paralelo.




FORMULA LEY DE OHM:
CONDENSADORES:

Son componente que almacena energia electrica por un determinado tiempo.

Hay dos clase de condensadores:

condensadores electroliticos: son componentes que tienen polaridad (negativo, positivo



como podemos la flecha roja señala donde va ubica la parte negativa del condensador


condensadores no electroliticos: son componente que no tiene polaridad.









POLARIDADES:

La primera polaridad que vemos como (C1). es el simbolo para condensadores no polarizados.

la segunda poolaridad que vemos esta en el (C2,C3) es el simbolo para condensadores polarizados.


TRANSISTORES:

QUE ES UN TRANSISTOR:

En definición un transistor es un componente electrónico, tanto para circuitos analógicos como digitales, que va a tener la función de aumentar la corriente de señales (audio,pulsos,video,etc). Esta compuesto por uniones de material tipo P y N (o sea Silicio y Germanio, entre otros). Por ser un semiconductor, su uso es extremadamente importante en muchos circuitos.

Existen dos tipos transistores: el NPN y el PNP, y la dirección del flujo de la corriente en cada caso, lo indica la flecha que se ve en el gráfico de cada tipo de transistor.


Símbolos de los transistores bipolares NPN y PNP - Electrónica   Unicrom


El transistor: es un dispositivo de 3 patillas con los siguientes nombres: base (B), colector (C) y emisor (E), coincidiendo siempre, el emisor, con la patilla que tiene la flecha en el gráfico de transistor.


Transistor BJT:

Es un dispositivo electrónico de estado sólido consistente en dos uniones PN muy cercanas entre sí, que permite controlar el paso de la corriente a través de sus terminales.

La denominación de bipolar se debe a que la conducción tiene lugar gracias al desplazamiento de portadores de dos polaridades (huecos positivos y electrones negativos), y son de gran utilidad en gran número de aplicaciones; pero tienen ciertos inconvenientes, entre ellos su impedancia de entrada bastante baja. Los transistores bipolares son los transistores más conocidos y se usan generalmente en electrónica analógica aunque también en algunas aplicaciones de electrónica digital.





Transistor FET:

Tienen tres terminales, denominadas puerta (gate), drenador (drain) y fuente (source). La puerta es el terminal equivalente a la base del BJT. El transistor de efecto de campo se comporta como un interruptor controlado por tensión, donde el voltaje aplicado a la puerta permite hacer que fluya o no corriente entre drenador y fuente.

El funcionamiento del transistor de efecto de campo es distinto al del BJT. En los MOSFET, la puerta no absorbe corriente en absoluto, frente a los BJT, donde la corriente que atraviesa la base, pese a ser pequeña en comparación con la que circula por las otras terminales, no siempre puede ser despreciada. Los MOSFET, además, presentan un comportamiento capacitivo muy acusado que hay que tener en cuenta para el análisis y diseño de circuitos.

Así como los transistores bipolares se dividen en NPN y PNP, los de efecto de campo o FET son también de dos tipos: canal n y canal p, dependiendo de si la aplicación de una tensión positiva en la puerta pone al transistor en estado de conducción o no conducción, respectivamente. Los transistores de efecto de campo MOS son usados extensísimamente en electrónica digital, y son el componente fundamental de los circuitos integrados o chips digitales.





DIODOS:

HAY VARIOS TIPOS DE DIODOS:

Diodos zener:

Es un tipo especial de diodo, que siempre se utiliza polarizado inversamente.

el diodo zener se polariza en sentido directo se comporta como un diodo rectificador común.

Simbolo del diodo Zener con la dirección del flujo de la corriente  para su normal funcionamiento - Electrónica Unicrom


Cuando el diodo zener funciona polarizado inversamente mantiene entre sus terminales un voltaje constante.

En el gráfico se ve el símbolo de diodo zener (A - ánodo, K - cátodo) y el sentido de la corriente para que funcione en la zona operativa



Diodos rectificadores:

Los diodos rectificadores son los que en principio conocemos, estos facilitan el paso de la corriente contínua en un sólo sentido (polarización directa), en otras palabras, si hacemos circular corriente alterna a través de un diodo rectificador esta solo lo hará en la mitad de los semiciclos, aquellos que polaricen directamente el diodo, por lo que a la salida del mismo obtenemos una señal de tipo pulsatoria pero contínua. Se conoce por señal o tensión contínua aquella que no varia su polaridad.


Diodo leds:

Este tipo de diodos es muy popular, sino, veamos cualquier equipo electrónico y veremos por lo menos 1 ó más diodos led. Podemos encontrarlos en direfentes formas, tamaños y colores

diferentes. La forma de operar de un led se basa en la recombinación de portadores mayoritarios en la capa de barrera cuando se polariza una unión Pn en sentido directo. En cada recombinación de un electrón con un hueco se libera cierta energía. Esta energía, en el caso de determinados semiconductores, se irradia en forma de luz, en otros se hace de forma térmica.

Dichas radiaciones son básicamente monocromáticas (sin color). Por un método de "dopado" del material semiconductor se puede afectar la enegía de radiación del diodo.

El nombre de LED se debe a su abreviatura en ingles ( Light Emmiting Diode )
Además de los diodos led existen otros diodos con diferente emisión, como la infrarroja, y que responden a la denominación IRED (Diodo emisor de infra-rojos).




Fotoresistencias:

Una fotorresistencia es un componente electrónico cuya resistencia disminuye con el aumento de intensidad de luz incidente. Puede también ser llamado fotorresistor, fotoconductor, célula fotoeléctrica o resistor dependiente de la luz, cuya siglas (LDR) se originan de su nombre en inglés light-dependent resistor.

Un fotorresistor está hecho de un semiconductor de alta resistencia. Si la luz que incide en el dispositivo es de alta frecuencia, los fotones son absorbidos por la elasticidad

del semiconductor dando a los electrones la suficiente energía para saltar la banda de conducción. El electrón libre que resulta (y su hueco asociado) conduce electricidad, de tal modo que disminuye la resistencia.

Un dispositivo fotoeléctrico puede ser intrínseco o extrínseco. En dispositivos intrínsecos, los únicos electrones disponibles están en la banda de la valencia, por lo tanto el fotón debe tener bastante energía para excitar el electrón a través de toda la banda prohibida. Los dispositivos extrínsecos tienen impurezas agregadas, que tienen energía de estado a tierra más cercano a la banda de conducción puesto que los electrones no tienen que saltar lejos, los fotones más bajos de energía (es decir, de mayor longitud de onda y frecuencia más baja) son suficientes para accionar el dispositivo.

Se fabrican de diversos tipos. Se pueden encontrar células baratas de sulfuro del cadmio en muchos artículos de consumo, por ejemplo cámara fotográfica, medidores de luz, relojes con radio, alarmas de seguridad y sistemas de encendido y apagado del alumbrado de calles en función de la luz ambiente. En el otro extremo de la escala, los fotoconductores de Ge:Cu son los sensores que funcionan dentro de la gama más baja “radiación infrarroja”.


Memoria Eprom:

Son memorias de solo lectura, pro-gramables por el usuario, y que pueden programarse repetidamente.

se realizan con muy diversas técnicas; las mas corriente es la de-nominada *gate flotante. Se acumula una carga en un gate de silicio policris-talino que flota sobre un sustrato, también de silicio, pero aislado por una capa de bióxido de silicio. Este tipo de memorias EPROM puede mantener memo-rizada la información durante un mínimo de 10 años con una perdida no supe-rior al 20 por 100.

Chip programable y reutilizable que conserva su contenido hasta que se borra bajo luz ultravioleta. Los EPROM tienen una vida de unos cuantos cientos de circuitos de escritura. Se espera que los EPROM finalmente den paso a la memoria flash.



Memoria EEprom:

Es un tipo de memoria ROM que puede ser programado, borrado y reprogramado eléctricamente, a diferencia de la EPROM que ha de borrarse mediante un aparato que emite rayos ultravioletas. Son memorias no volátiles. Las celdas de memoria de una EEPROM están constituidas por un transistor MOS, que tiene una compuerta flotante (estructura SAMOS), su estado normal esta cortado y la salida proporciona un 1 lógico. Aunque una EEPROM puede ser leída un número ilimitado de veces, sólo puede ser borrada y reprogramada entre 100.000 y un millón de veces.


FIN.....


No hay comentarios:

Publicar un comentario