MONITORES CRT
Historia
Los primeros monitores surgieron en el año 1981, siguiendo el estándar MDA (Monochrome Display Adapter) eran monitores monocromáticos (de un solo color) de IBM. Estaban expresamente diseñados para modo texto y soportaban subrayado, negrita, cursiva, normal, e invisibilidad para textos. Poco después y en el mismo año salieron los monitores CGA (Color Graphics Adapter) fueron comercializados en 1981 al desarrollarse la primera tarjeta gráfica a partir del estándar CGA de IBM. Al comercializarse a la vez que los MDA los usuarios de PC optaban por comprar el monitor monocromático por su coste.
Tres años más tarde surgió el monitor EGA (Enhaced Graphics Adapter) estándar desarrollado por IBM para la visualización de gráficos, este monitor aportaba más colores (16) y una mayor resolución. En 1987 surgió el estándar VGA (Video Graphics Array) fue un estándar muy acogido y dos años más tarde se mejoró y rediseñó para solucionar ciertos problemas que surgieron, desarrollando así SVGA (Super VGA), que también aumentaba colores y resoluciones, para este nuevo estándar se desarrollaron tarjetas gráficas de fabricantes hasta el día de hoy conocidos como S3 Graphics, NVIDIA o ATI entre otros.
Con este último estándar surgieron los monitores CRT que hasta no hace mucho seguían estando en la mayoría de hogares donde había un ordenador.
Los primeros monitores eran monitores de tubo de rayos catodicos (CRT), completamente analógicos, realizaban un barrido de la señal a lo largo de la pantalla produciendo cambios de tensión en cada punto, generando así imágenes.
TUBO DE RAYOS CATODICOS
El Tubo de Rayos Catódicos (CRT del inglés Cathode Ray Tube) es un dispositivo de visualización inventado por William Crookes en 1875. Se emplea principalmente en monitores, televisores y osciloscopios, aunque en la actualidad se están sustituyendo paulatinamente por tecnologías como plasma, LCD, LED o DLP
A pesar de que los CRT que se utilizan en los monitores modernos tuvieron muchas modificaciones que les permitieron mejorar la calidad de la imagen, siguen utilizando los mismos principios básicos.
La primera versión del tubo catódico fue un diodo de catodo frio, en realidad una modificación del tubo de Crookes con una capa de fosforo sobre el frontal. A este tubo se le llama a veces tubo Braun. La primera versión que utilizaba un cátodo caliente fue desarrollada por J. B. Johnson y H. W. Weinhart de la sociedad Western electric. Este producto se comercializó en 1922.
ORIGENES
El tubo de rayos catódicos, o CRT, fue desarrollado por Ferdinand Braun, un científico Alemán, en 1897 pero no se utilizó hasta la creación de los primeros televisores a finales de la década de 1940.
FUNCIONAMIENTO
El monitor es el encargado de traducir y mostrar las imagenes en forma de señales que provienen de la tarjeta grafica. Su interior es similar al de un televisor convencional. La mayoría del espacio está ocupado por un tubo de rayos catódicos en el que se sitúa un cañón de electrones. Este cañón dispara constantemente un haz de electrones contra la pantalla, que está recubierta de fosforo (material que se ilumina al entrar en contacto con los electrones). En los monitores en color, cada punto o píxel de la pantalla está compuesto por tres pequeños puntos de fósforo: rojo (magenta), cian (azul) y verde. Iluminando estos puntos con diferentes intensidades, puede obtenerse cualquier color.
La visualización vectorial
En el caso de un osciloscopio, la intensidad del haz se mantiene constante, y la imagen es dibujada por el camino que recorre el haz. Normalmente, la desviación horizontal es proporcional al tiempo, y la desviación vertical es proporcional a la señal. Los tubos para este tipo de usos son largos y estrechos, y además la desviación se asegura por la aplicación de un campo electrostático en el tubo mediante placas (de desviación) situadas en el cuello del tubo. Esta clase de desviación es más rápida que una desviación magnética, ya que en el caso de una desviación magnética la inductancia de la bobina impide las variaciones rápidas del campo magnético (ya que impide la variación rápida de la corriente que crea el campo magnético).
tubo de osciloscopio
Visualización vectorial de los ordenadores
Los primeros monitores gráficos para ordenadores utilizaban tubos de visualización vectorial similares a los de los osciloscopios. Aquí el haz trazaba líneas entre puntos arbitrarios, repitiendo el movimiento lo más rápidamente posible. Los monitores vectoriales se utilizaron en la mayor parte de los monitores de ordenador de finales de los años 1970 hasta la mitad de los años 1980. La visualización vectorial para ordenador no sufre de aliasing ni pixelización, pero están limitados ya que sólo pueden señalar los contornos de las formas, y una escasa cantidad de texto, preferiblemente de un tamaño grande. Esto es así porque la velocidad de visualización es inversamente proporcional al número de vectores que deben dibujarse y "rellenar" una zona utilizando muchos vectores es imposible, así como escribir una gran cantidad de texto. Algunos monitores vectoriales eran capaces de mostrar varios colores, a menudo utilizando dos o tres capas de fósforo. En estos monitores, controlando la fuerza del haz de electrones, se controla la capa alcanzada y en consecuencia el color mostrado, que generalmente era verde, naranja o rojo.
Otros monitores gráficos utilizaban tubos de almacenamiento (storage tube). Estos tubos catódicos almacenaban las imágenes y no necesitaban refresco periódico.
Su interior es similar al de un televisor convencional. La mayoría del espacio está ocupado por un tubo de rayos catódicos en el que se sitúa un cañón de electrones. Este cañón dispara constantemente un haz de electrones contra la pantalla, que está recubierta de fosforo (material que se ilumina al entrar en contacto con los electrones). En los monitores en color, cada punto o píxel de la pantalla está compuesto por tres pequeños puntos de fósforo: rojo (magenta), cian (azul) y verde. Iluminando estos puntos con diferentes intensidades, puede obtenerse cualquier color.
Principio
Protecciones
El vidrio utilizado en el frontal del tubo, permite el paso de la luz producida por el fósforo hacia el exterior, pero en todos los modelos modernos bloquea los rayos x generados por el impacto del flujo de electrones con una gran energía. Por esta razón el vidrio del tubo contiene plomo. Gracias a ello y a otras protecciones internas, los tubos pueden satisfacer las normas de seguridad, que son cada vez más severas en lo que se refiere a la radiación.
Colores mostrados
Los tubos catódicos tienen una intensidad característica en el flujo de electrones, intensidad luminosa que no es lineal, lo que se denomina gamma. Para los primeros televisores, el gamma de la pantalla fue una ventaja, ya que al comprimir la señal (un poco a la manera de un pedal de compresión para una guitarra) el contraste se aumenta (nota: no se habla de compresión numérica, sino de compresión de una señal, que puede estar definida por una reducción de aquello que tiene un nivel alto y un aumento de lo que es más bajo). Los tubos modernos tienen siempre un gamma (más bajo), pero este gamma se puede corregir para obtener una respuesta lineal, permitiendo ver la imagen con sus verdaderos colores, lo que es muy importante en la imprenta entre otras cosas
ELECTRICIDAD ESTATICA
Algunas pantallas o televisores que utilizan tubos catódicos pueden acumular electricidad estática, inofensiva, sobre el frontal del tubo, lo que puede implicar la acumulación de polvo, que reduce la calidad de la imagen. Se hace necesaria una limpieza (con un trapo seco o un producto adecuado, ya que algunos productos pueden dañar la capa anti-reflejo, si ésta existe).
IMANTADO
Al acercar un imán a un monitor CRT se alterará el magnetismo de la bobina de deflexión y con ello la incidencia del rayo catódico sobre la pantalla. Normalmente causará una deformación en la imagen y problemas con los colores hasta que retiramos el campo magnético.
Si dejamos mucho tiempo un monitor cerca de un campo magnético fuerte el monitor puede magnetizarse y aparecerán colores equivocados en el área afectada. Los rayos catódicos de cada color primario incidirán en áreas equivocadas de otros colores mostrándose imágenes alteradas. Si la magnetización es débil el problemas desaparecerá con el tiempo pero si es fuerte el problema será permanente. La mayor parte de los televisores de tubo y los monitores de ordenador modernos han incorporado un sistema llamado degausador que reduce o elimina el imantado indeseado al aplicar un fuerte campo magnético al tubo cada vez que se encienden o activándolo desde algún botón o menú interno.
Espectro de los fósforos azules, verdes y rojos en un Tubo de Rayos Catódicos estándar
Es posible comprar o construir un dispositivo exterior degausador (también conocido como desmagnetizador), que puede ayudar a desmagnetizar los más viejos monitores o en casos donde es ineficaz el aparato incorporado. Consiste en una bobina que produce un gran campo magnético. Se emplea encendiendo el TV o monitor y mostrando una imagen en el tubo. Se acerca la bobina al centro del monitor se mueve lentamente en círculos concéntricos nunca más anchos del borde del monitor, hasta que los colores incorrectos son eliminados. Este proceso puede necesitar repetirse muchas veces para eliminar algunas magnetizaciónes más difíciles. Para un ajuste más perfecto debe emplearse una imagen fija, siendo recomendable el empleo de un generador de señal. El empleo inadecuado de un desmagnetizador puede empeorar el problema.
La causa mas común de magnetización en monitores de ordenador es el campo magnético del transformador de alguna fuente de alimentacion cercana.
Existen monitores profesionales con blindaje electromagnético para usarse en entornos con presencia de campos magnéticos fuertes.
DETERIORO EN EL TIEMPO
Como ocurre en todos los tubos termiónicos, también en el CRT la eficiencia de emisión de electrones de parte del cátodo en el tiempo tiende a disminuir progresivamente, causando una menor luminosidad en las imágenes. En los osciloscopios, la consecuencia es una menor luminosidad de la huella. La causa del deterioro es la alteración de la capa de óxido depositada sobre la superficie del cátodo y la formación sobre su superficie de minúsculos grumos y escorias a consecuencia de los innumerables encendidos y apagados. Esto impide el flujo normal de electrones desde el cátodo. Aún se pueden encontrar aparatos "regeneradores" que permiten aumentar la vida útil del tubo. El método de estos aparatos consiste en aplicar una tensión elevada, entre el pin unido al cátodo y el pin unido a la primera rejilla cercana a él. El arco voltaico que se forma destruye las escorias más consistentes dando nueva vida al tubo aunque normalmente se suele deteriorar de nuevo rápidamente. A veces, cuando se recurre a la regeneración el tubo queda inservible al destruirse el cátodo o la rejilla
POSIBLES RIESGOS
Campos EM
Aunque no hay pruebas de ello algunos creen que los campos electromagnéticos emitidos durante el funcionamiento del tubo catódico puedan tener efectos biológicos. La intensidad de este campo se reduce a valores irrelevantes dentro de un metro de distancia y en todo caso el efecto es más intenso a los lados de la pantalla que frente a ella.
Riesgo de implosión
Cuando se ejerce demasiada presión sobre el tubo o se le golpea puede producirse una implosión debida al vacío interior. Las explosiones que a veces se ven en cine y televisión no son posibles. En los tubos de los modernos televisores y monitores la parte frontal es mucho más gruesa, se añaden varias capas de vidrio y láminas plásticas de modo que pueda resistir a los choques y no se produzcan implosiones. El resto del tubo y en particular el cuello son en cambio muy delicados. En otros tubos, como por ejemplo los osciloscopios, no existe el refuerzo de la pantalla, en cambio se usa una lámina plástica antepuesta como protección. El tubo catódico tiene que ser manejado con atención y competencia; se tiene que evitar en particular levantarlo por el cuello y sujetarlo siempre por los puntos indicados por el fabricante.
Toxicidad
En los tubos más antiguos fueron empleadas sustancias tóxicas para incrementar el efecto de los rayos catódicos sobre el fósforo. En la actualidad han sido reemplazadas por otras más seguras. La implosión o en todo caso la rotura del vidrio causa la dispersión de estos materiales. En la eliminación y reciclado de los tubos se tiene que tener en cuenta además la presencia de plomo en el cristal, que es muy contaminante.
Parpadeo
Este efecto no es exclusivo de los tubos de vacío. También se observa en pantallas planas aunque en estas es habitual encontrar sistemas para reducirlo.
La señal de TV convencional está formada por 25 imágenes por segundo en el sistema PAL y de 30 en el sistema NTSC. Con el entrelazado se consigue reducir el parpadeo dividiendo cada imagen en 2. Una con las líneas pares y otra con las impares que se muestran una detrás de otra aumentando la frecuencia a 50/60 hz.
Este continuo parpadeo es el que causa mareos y molestias visuales cuando vemos la televisión durante demasiado tiempo. En algunas personas sensibles puede incluso desencadenar crisis epilepticas.
Algunos modelos de televisores solucionan este problema almacenando la señal en una memoria y repitiendo cada imagen completa sin entrelazado varias veces. El sistema más extendido en PAL es el de 100 Hz que repite cada imagen 4 veces y reduce notablemente el parpadeo. Los primitivos sistemas de 100Hz anunciaban un aumento de calidad pero al emplear analógico/digitales primitivos con poco muestreo y cuantificacion la calidad de imagen era sensiblemente menor. El método de digitalización intentaba usar el mínimo de memoria posible ya que la memoria era muy cara por entonces. El abaratamiento de los circuitos integrados de memoria y el avance de la electrónica en general ha conseguido que en el mercado podamos encontrar pantallas de 200Hz que hacen el parpadeo imperceptible mantienendo la calidad de la señal.
Alta tensión
Para dirigir el haz en los tubos de rayos catódicos se emplean tensiones eléctricas muy altas (decenas de miles de voltios). Estas tensiones pueden permanecer en el aparato durante un tiempo después de apagarlo y desconectarlo de la red eléctrica. Se debe evitar por lo tanto abrir el monitor o televisor si no se dispone de una adecuada preparación técnica
LIMPIEZA DE MONITORES
Los limpiadores líquidos, incluso el alcohol, pueden dañar la carcaza plástica que recubre losmonitores, no los utilice. Sí puede utilizar agua sobre la carcaza, pero tenga en consideración que no debe gotear dentro del monitor, y si así sucediera, debe esperar un día sin utilizarlo para que se evapore.
Si se vuelca una considerable cantidad de líquido dentro del monitor, debe abrirlo para que se seque correctamente.
No hay comentarios:
Publicar un comentario